- 5.液状化危険度の予測
- 5.1 液状化危険度の予測の流れ

液状化危険度の予測については、以下の方針で実施するものとした。

- 1) 液状化予測手法として、東日本大震災でも手法の妥当性が評価されている FL 法(道路 橋示方書(2002))及び岩崎ら(1980)による PL 法を用いて予測計算を行う。
- 2) 液状化予測に必要な地盤モデルは、地震動予測のために作成した浅部地盤モデルを用いることとし、液状化計算に必要な物性値は道路橋示方書(2002)等の既往の成果を参考に適宜設定する。
- 3) 入力地震動については、地震動予測結果(ステップ1、2)の計測震度を用いる。

図-5.1.1 液状化危険度の予測の流れ

5.2 液状化予測計算用地盤モデルの作成

地震動予測で作成した浅部地盤モデルを基本とし、さらに、液状化予測計算に必要な N 値・地 下水位等のパラメータを設定した。

以降に液状化予測計算用地盤モデルの作成方法について述べる。

(1) 液状化判定対象地形区分の定義

液状化の発生は、全ての場所で発生するわけではなく、地形区分との関連があると言われて いる。「液状化地域ゾーニングマニュアル」(1999 年、国土庁)では、微地形分類図と以下に示 す液状化判定基準を利用して、地盤の液状化の可能性を地震動に応じて4段階で判定している。

地盤表層の液状化可能性の程度					
クッレート	<i>ヴレ</i> ード 2			微地形区分	
1	レベル1 地震動 レベル2 地震動		ベル2地震動		
液 状 化 耐 を 要 す る 地域	大	液状化の 可能性は 大きい。	極大	液状化の 可能性は 非常に大きい。	埋立地、盛土地、旧河道、旧池沼、 蛇行州、砂泥質の河原、人工海浜、 砂丘間低地、提間低地、湧水地点
	小	液状化の 可能性は 小さい。	大	液状化の 可能性は 大きい。	自然堤防、湿地、砂州、後背低地、 三角州、干拓地、緩扇状地 デルタ型谷底平野
	極小	液状化の 可能性は 極めて小。	小	液状化の 可能性は 小さい。	扇状地、砂礫質の河原、砂礫州、 砂丘、海浜 扇状地型谷底平野
要しな い地域	無	可能性無し。	無	可能性無し。	台地、丘陵地、山地

表-5.2.1 地形区分から見た液状化判定基準

(出典:国土庁,液状化地域ゾーニングマニュアル,1999.)

本調査では、「液状化地域ゾーニングマニュアル」の液状化判定基準を参考に、秋田県で採用 した地形区分と比較して、以下に示す地形区分を液状化判定対象地形区分と定義した。

液状化判定対象地形区分	非液状化地形区分
・デルタ型谷底低地 1	・山地
・扇状地型谷底低地 ¹	・山麓地
・緩扇状地 2	・丘陵
・自然堤防	・火山地
・後背湿地	・火山麓地
・旧河道	・火山性丘陵
・三角州・海岸低地	・岩石台地
・砂州・砂礫洲	・砂礫質台地
・砂丘(旧砂丘、新砂丘)	・ローム台地
・砂州・砂丘間低地	・扇状地
・干拓地	
・埋立地	

表-5.2.2 液状化判定対象地形区分

1 メッシュ傾斜値が 0.01 以上のものを扇状地型谷底低地、0.01 未満のものをデルタ型谷底低地とした。(損害保険料率算出機構(2008))

扇状地型谷底低地は、デルタ型谷底低地と比較して、若干液状化しにくい地盤を考慮した。 2 メッシュ傾斜値が 0.01 以上のものを急傾斜扇状地、0.01 未満のものを緩傾斜扇状地とした。(損

害保険料率算出機構(2008))

(2) 液状化計算に利用可能なボーリング柱状図の抽出

液状化判定には、ボーリング柱状図を使用する。使用するボーリング柱状図は、液状化判定 計算に必要な以下の条件を満たしたものとする。

- ボーリングの掘進長が 20m 以上のもの または、 ボーリングの掘進長が 20m を満たさない場合でも、N 値 50 以上が 3m 以上連続する層 が確認されているもの
- 2) 掘進長 20m 以内に標準貫入試験を実施しているもの

(3) ボーリング柱状図のメッシュ割り当て 250m メッシュごとに液状化予測計算に必要な代表柱状図を選定する。

【ボーリング柱状図がメッシュ内にある場合】

- ・ボーリング柱状図が当該メッシュ内に1本しかない場合は、これを代表柱状図とする。
- ・ボーリング柱状図が当該メッシュ内に複数本存在する場合は、掘進長の深いものを代表柱状図とする。

【ボーリング柱状図がメッシュ内にない場合】

- ・微地形区分が同じメッシュの中で、最も近いものを代表柱状図とする。
- ・半径 1km 圏内に同じ微地形区分のボーリング柱状図が存在しない場合は、最も近いものを代 表柱状図とする。

ただし、八郎潟(大潟村)については、ボーリングデータが少ないため、以下のような処理を 行った(図-5.2.1 参照)。

- 1) 八郎潟(大潟村)全体は、干拓地に属し、泥層が深く、非常に軟弱な地盤であるため、 全域で下図に示す「AKITA0530」を代表柱状図とした。
- 八郎潟(大潟村)の干拓堤防は、西側は「AKITA0534」、東側は「AKITA0485」を代表柱状図とした。

図-5.2.1 八郎潟(大潟村)における代表柱状図の選定

(4) 地盤物性値の設定

液状化解析に必要な単位重量、平均粒度、細粒分含有率については、道路橋示方書(2002)の 概略値を参考に設定することとした。

十府八海	地下水面下の	地下水面上の	平均粒径	細粒分含有率
上貝刀 <u>規</u>	単位重量(kN/m³)	単位重量(kN/m ³)	(mm)	(%)
表土	17.0	15.0	0.020	80
シルト	17.5	15.5	0.025	75
砂質シルト	18.0	16.0	0.040	65
シルト質細砂	18.0	16.0	0.070	50
微細砂	18.5	16.5	0.100	40
細砂	19.5	17.5	0.150	30
中砂	20.0	18.0	0.350	10
粗砂	20.0	18.0	0.600	0
砂礫	21.0	19.0	2.000	0

表-5.2.3 土質分類と単位重量、平均粒径、細粒分含有率の概略値

(出典:道路橋示方書・同解説 耐震設計編,平成14年3月)

(5) 地下水位の設定

液状化計算に使用する地下水位は、ボーリング柱状図に記載されている地下水位を用いた。 ボーリング柱状図内に地下水位が記載されていない場合は、微地形区分ごとに算出した地下水 位の平均値を使用することとした。

+4 17:2 2 米百	平均地下水	
地形方類	(GL m)	
谷底低地	2.842	
扇状地	2.503	
自然堤防	2.436	
後背湿地	2.431	
旧河道	2.094	
三角州・海岸低地	1.459	
砂丘	2.993	
干拓地	0.878	
埋立地	1.451	

表-5.2.4 地形区分別の地下水位の平均値

5.3 液状化危険度の予測手法

液状化危険度の指標には、「道路橋示方書」に代表される FL 法及びこれを深度方向に積分した PL 法を用いた。FL 法及び PL 法について以下に概要を記す。

液状化可能性の評価については、中央防災会議(2012)と同様に「道路橋示方書・同解説(2002)」 に準じた。すなわち、表層部での地震動計算結果から地中のせん断応力を求め、液状化対象層ご とに液状化に対する抵抗率(FL値)を算出し、地層全体の液状化指数(PL値)を評価するものである。 FL値及び PL値の算出手法を以降に記す。

(1) FL法(日本道路協会・道路橋示方書に準じる)

FL 法とは、検討対象とする地盤から液状化対象層を抽出し、液状化対象層それぞれについて、 液状化に対する抵抗力と地震力の強さとを比較し、液状化に対する抵抗率(FL 値)を求めるもの である。

【液状化に対する抵抗率 FL 値】

$$F_L = \frac{R}{L}$$
(5.1)

ここに、R:地盤の動的せん断強度比

L:地震時のせん断応力比

【地盤の動的せん断強度比 R】

$$R = C_W \cdot R_L \tag{5.2}$$

$$R_{L} = \begin{cases} 0.082\sqrt{N_{a}/1.7} & (N_{a} < 14) \\ 0.082\sqrt{N_{a}/1.7} + 1.6 \times 10^{-6} \cdot (N_{a} - 14)^{4.5} & (N_{a} \ge 14) \end{cases}$$
(5.3)

ここで、砂質土の場合

$$N_{a} = C_{1} \cdot N_{1} + C_{2}$$

$$N_{1} = 170 \cdot N/(\sigma_{v}^{\prime} + 70)$$

$$C_{1} = 1 \qquad (0\% \quad Fc < 10\%)$$

$$= (FC + 40)/50 \qquad (10\% \quad Fc < 60\%) \qquad (5.4)$$

$$= Fc/20 - 1 \qquad (60\% \quad Fc)$$

$$C_{2} = 0 \qquad (0\% \quad Fc < 10\%)$$

$$= (Fc - 10)/18 \qquad (10\% \quad Fc)$$

礫質土の場合

 $N_a = \{1 - 0.36 \cdot \log_{10}(D_{50}/2)\} \cdot N_1$

ここに、*C_W*: 地震動特性による補正係数

R_L:繰返し三軸強度比

- N:標準貫入試験から得られるN値
- N1: 有効上載圧 100kN/m²相当に換算した N 値
- Na: 粒度の影響を考慮した補正 N 値
- σ'_v :有効上載圧(kN/m²)
- *C*₁, *C*₂:細粒分含有率によるN値の補正係数
- F_C:細粒分含有率(%)(粒径75µm以下の土粒子の通過質量百分率)

D₅₀:平均粒径(mm)

- また、*C*_Wは、
 - (タイプ (海溝型)の地震動の場合)

 $C_W = 1.0$

(5.6)

(5.5)

(タイプ (内陸型)の地震動の場合)

$C_W = 1.0$	$(R_L 0.1)$	
= 3.3RL + 0.67	$(0.1 \le R_L 0.4)$	(5.7)
= 2.0	$(R_L > 0.4)$	

【地震のせん断応力比L】

 $L = r_d \cdot K_s \cdot \sigma_v / \sigma_v' \tag{5.8}$

$$r_d = 1.0 - 0.015x \tag{5.9}$$

- ここに、r_d:地震時のせん断応力比の深さ方向の低減係数
 - *K*_S:液状化に対する設計震度
 - x: 地表面からの深さ(m)
 - σ_{y} : 地表面からの深さ x における全上載圧(kN/m²)
 - σ'_{y} : 地表面からの深さ x における有効上載圧(kN/m²)

$$K_s = A_{\rm max} / 9.8$$
 (5.10)

 A_{max}:地表最大加速度(m/s²)

 9.8:重力加速度(m/s²)

地表加速度は、地表の震度より、童・山崎(1996) による計測震度と最大加速度との以下の関 係式を用いる。

 $I = 0.59 + 1.89 \cdot \log_{10}(A_{\max})$ (5.11)

ここに、1:計測震度

童華南・山崎文雄:地震動強さと新しい気象庁震度との対応関係,生産研究,48,11,pp.547-55,1996.

(2) PL法

各深度で算出した FL 値に対して、深さ方向に重みをつけて足し合わせ、地点での液状化危険 度表す PL 値を算出する。

【地層全体の液状化指数 PL 値(岩崎ら(1980)の手法)】

$$P_L = \int_0^{20} (1 - F_L) (10 - 0.5x) dx$$
(5.12)

ここに、 P_L :液状化指数

F_L:液状化に対する抵抗率

x: 地表面からの深さ(m)

【PL 値による液状化の判定】

岩崎ら(1980)より、算出した PL 値から以下に示す液状化判定を実施する。

PL 值	液状化の判定
PI _0	液状化危険度は極めて低い。液状化に関する詳細な調査
FL=0	は不要。
	液状化危険度は低い。特に重要な構造物に対して、より
UNPL 5	詳細な調査が必要。
5 < DI 15	液状化危険度が高い。重要な構造物に対してはより詳細
5 YFL 15	な調査が必要。液状化対策が一般に必要。
15 < DI	液状化危険度が極めて高い。液状化に関する詳細な調査
I I I I I I I I I I I I I I I I I I I	と液状化対策は不可避。

表-5.3.1 PL 値による液状化判定

岩崎敏男,龍岡文夫,常田賢一,安田進:地震時地盤液状化の程度の予測について,土と基礎, Vol.28,No.4,23-29,1980.

5.4 液状化に伴う地盤沈下量の予測手法

2011 年に発生した東日本大震災では、広い範囲で液状化が発生し、液状化に伴う地盤沈下により多くの家屋が被害を受けた。よって、本調査では、液状化に伴う地盤沈下量を算出する。

液状化に伴う地盤沈下量は、「建築基礎構造設計指針」(2001 年、日本建築学会)に示されている補正 N 値と繰返しせん断ひずみ γ_{cy}の関係を用いて、補正 N 値と応力比のプロット点に対応する 繰返しせん断ひずみを、隣接する γ_{cy} 曲線の対数補間により求めることとした。

【補正 N 値(Na)の算出方法】

$$N_{a} = N_{l} + \Delta N_{f}$$
$$N_{l} = C_{N} \times N$$
$$C_{N} = \sqrt{98/\sigma_{Z}'}$$

(5.13)

ここに、N_a:補正 N 値

*N*_l:換算 N 値

ΔN_f:細粒分含有率に応じた補正 N 値の増分(下図参照)

C_N:換算 N 値係数

 σ'_{z} :検討深さにおける有効土被り圧(kN/m²)

N:実測N値

図-5.4.1 細粒分含有率(Fc)と補正 N 値増分(N_f)の関係

【沈下量の算出方法】

繰返しせん断ひずみ γ_{cy} を下記グラフから読み取る際、繰返しせん断ひずみ 8%の曲線より左側にプロットされる場合には γ_{cy} = 8%とし、0.5%より右側にプロットされる場合には、 γ_{cy} = 0.5%とする。

繰返しせん断ひずみ γ_{cy} を体積ひずみ ε_{ν} として読み替える。そして、沈下量 S を次のようにして推定した。

$$S = \sum_{i=0}^{n} \left(H_i \times \varepsilon_{V_i} \right) \tag{5.14}$$

ここに、*S*:沈下量

 $H_i: F_L < 1.0$ となる土層 iの層厚 $\varepsilon_{V_i}: F_L < 1.0$ となる土層 iの体積ひずみ $n: F_L < 1.0$ となる土層数

本検討では、図中の縦軸「応力比 τ_d/σ'_z 」に「地震のせん断応力比L」を適用する。

図-5.4.2 補正 N 値と繰返しせん断ひずみの関係 (出典:建築基礎構造設計指針, 2001 年 10 月, 日本建築学会)

- 5.5 液状化予測用地盤モデルの妥当性検証(日本海中部地震)
 - (1) 検証方法
 - 1) 液状化予測計算用地盤モデルの妥当性を確認するために、日本海中部地震(1983年) を対象として、液状化現象の再現計算を実施した。
 - 日本海中部地震は、昭和58年5月26日に発生したマグニチュード7.7の地震である。
 この地震により、青森県から秋田県にかけて、広い範囲で液状化現象が発生した。
 - 3) 今回、検証に使用した日本海中部地震の液状化発生地点は、「1983年日本海中部地震 震害調査報告書」(1986年、土木学会)を用いた。
 - 4) 地震動の予測は、4.2 に記した司・翠川(1999)の断層最短距離による距離減衰式を 用いた。
 - (2) 検証結果

日本海中部地震において、実際に液状化した地点と計算に基づく PL 値の評価結果の比較を行った結果、実際には液状化していないにも関わらず、「液状化の危険度が極めて高い(PL > 15)」。 あるいは「液状化の危険度が高い(5 < PL 15)」という評価になっている地点も一部見られた。 この理由として、ボーリングデータが不十分な箇所では実際と異なる地盤モデルになっている こと、液状化判定手法が PL 値を大きく算出しやすい性質を有していることの2点が考えられる。 ただし、全体的に見ると、液状化しやすいと推定される地点は液状化危険度が高い評価にな

っており、本調査で作成したモデルが、地震被害想定のモデルとして十分な精度を有していると判断した。

司宏俊,翠川三郎:断層タイプ及び地盤条件を考慮した最大加速度・最大速度の距離減衰式,日本建築学会 構造系論文集,第 523 号,63-70,1999.

5.6 液状化危険度の予測結果

液状化危険度の予測結果については、PL値に基づく液状化危険度分布図及び液状化による沈下 量を作図した。全27の想定地震に対する液状化危険度の予測結果を図-5.6.1~5.6.27に示す。

(1)能代断層帯(M=7.1)

(3)男鹿地震(M=7.0)

(5)秋田仙北地震震源北方(M=7.2)

図-5.6.5 液状化危険度の予測結果(秋田仙北地震震源北方(M=7.2))

(6) 北由利断層 (M=7.3)

(7)秋田仙北地震(M=7.3)

(9) 横手盆地東縁断層帯南部(M=7.3)

図-5.6.9 液状化危険度の予測結果(横手盆地東縁断層帯南部(M=7.3))

(10)真昼山地東縁断層帯北部(M=7.0)

(11)真昼山地東縁断層帯南部(M=6.9)

(12)象潟地震(M=7.3)

(13) 横手盆地 真昼山地連動 (M=8.1)

図-5.6.14 液状化危険度の予測結果(秋田仙北地震震源北方 秋田仙北地震連動(M=7.7))

(19)北上低地西縁断層帯 (M=7.8)

図-5.6.19 液状化危険度の予測結果(北上低地西縁断層帯(M=7.8))

(20) 庄内平野東縁断層帯(M=7.5)

図-5.6.20 液状化危険度の予測結果(庄内平野東縁断層帯(M=7.5))

(21)新庄盆地断層帯(M=7.1)

(22)海域A(M=7.9)

(23)海域 B(M=7.9)

(2 5)海域 A+B(M=8.5)

図-5.6.26 液状化危険度の予測結果(海域 B+C(M=8.3))

(27)海域 A+B+C(M=8.7)

